Контакты

1-й Российский сайт о ракетной технике и технологии :: MISSILES.RU
главная - новости и статьи || обзоры || фото || ссылки || история || каталог || карта сайта
КТРВ ::

Ракетные комплексы "Корпорации "Тактическое ракетное вооружение"

 

Авиационная ракета класса "Воздух-РЛС" Х-31П

Назначение

Высокоскоростная противорадиолокационная ракета Х-31П с пассивной радиолокационной головкой самонаведения (ПРГС) предназначена для поражения РЛС из состава ЗРК большой и средней дальности, а также для других РЛС наземного и морского базирования различного назначения. ПРГС обеспечивает поиск и захват цели на подвеске под самолётом-носителем по данным аппаратуры носителя или автономно, а также сопровождение цели и формирование сигналов для наведения ракеты.

Основные тактико-технические характеристики

Дальность пуска, км 15-110
Максимальная скорость на траектории, м/с 1000
Стартовая масса, кг 600
Масса боевой части, кг 87
Длина ракеты, м 4,7
Диаметр ракеты, м 0,36
Реплика страницы http://www.ktrv.ru/production/68

Авиационная противокорабельная ракета средней дальности Х-31А

Назначение

Высокоскоростная авиационная противокорабельная ракета Х-31А с активной радиолокационной головкой самонаведения (АРГС) предназначена для поражения в простых и сложных метеоусловиях, днём и ночью кораблей классов до эсминца включительно, следующих как одиночно, так и в составе корабельных ударных групп. Ракета Х-31А может быть использована при одиночном или групповом применении. АРГС обеспечивает обнаружение и выбор цели (на траектории или до старта ракеты).

Основные тактико-технические характеристики

Дальность пуска, км 7,5-70
Максимальная скорость на траектории, м/с 1000
Стартовая масса, кг 610
Масса боевой части, кг 94
Длина ракеты, м 4,7
Диаметр ракеты, м 0,36

Реплика страницы http://www.ktrv.ru/production/68

 

Противорадиолокационная тактическая ракета Х-25МП

Назначение

Тактическая противорадиолокационная ракета Х-25МП предназначена для поражения РЛС противника, входящих в состав зенитных ракетных комплексов средней и малой дальности. Ракета Х-25МП создана на базе модели Х-25МП с использованием новых технических решений. Бортовой комплекс управления Х-25МП объединяет инерциальную навигационную систему и пассивную лазерную головку самонаведения, работающую в нескольких частотных поддапазонах РЛС-целей. Применяется неконтактный датчик подрыва.

Основные тактико-технические характеристики

Дальность пуска, км не менее 40
Максимальная скорость полёта, м/с 920
Стартовая масса, кг до 330
Масса боевой части, кг 86-90
Длина ракеты, м 3,705
Диаметр ракеты, м 0,275

Реплика страницы http://www.ktrv.ru/production/68

 

Авиационная многоцелевая управляемая модульная ракета Х-25МЛ

Назначение

Авиационная управляемая тактическая ракета Х-25МЛ с полуактивной лазерной головкой самонаведения предназначена для поражения малоразмерных целей на поле боя и в тактической глубине.

Основные тактико-технические характеристики

Дальность пуска, км 3-10
Максимальная скорость полёта, м/с 870
Стартовая масса, кг до 310
Масса боевой части, кг 86
Длина ракеты, м 3,705
Диаметр ракеты, м 0,275

Реплика страницы http://www.ktrv.ru/production/68

Defence

DEVELOPMENT OF AIR-LAUNCHED TACTICAL PRECISION-GUIDED WEAPONS:
PROBLEMS AND PROSPECTS

Development of precision-guided weapons (PGW) follows general trends in creation of highly unified interservice (mostly modular) multi-purpose weapon systems designed to perform a majority of modern-time and near-future combat missions. Such approach reflects current views on the role of tactical aviation in imaginable combat environment. Modern and prospective tactical fighters are seen, first of all, as multipurpose aircraft. It should be noted, however, that the idea of multipurpose fighter is not brand new: there were many attempts to create such a fighter before, starting perhaps with the US F-4E Phantom II. Until now this approach has not been fully realised. It is also worthy of noting that in Vietnam the F-4E classical multipurpose fighter usually lost in air combat to the MiG-21 classical fighter.

Modern concept of next-generation fighter is primarily based on the premise of equal combat capabilities of the aircraft both in air-to-air and air-to-ground missions. In line with this, the fighter should possess high agility and adequately wide operational altitude-speed envelope, including supersonic cruise modes. Its avionics and weapons systems must be equally efficient in combat modes for engagement of both air and ground targets. The aircraft also must be equipped with specialized onboard data transfer facilities ensuring its connectivity with centralized combat command and control networks.

The requirement of internal carriage of airborne munitions coupled with the limitation on the takeoff weight of the multipurpose fighter imposes stringent constraints on weights and dimensions of guided weapons, especially of air-to-ground ones.

Priorities in modern warfare are for the most part shifted towards tactical-level missions, at least as far as local conflicts or separate military operations are concerned. These missions often call for measured fire impact on targets to be engaged to minimize a collateral damage to civilian objects and population.

The latter requirement encourages continuation of development of multipurpose short-range (small-calibre) PGWs intended to defeat a majority of tactical targets, including pin-point and hardened ones.

Most prospective projects of short-range multipurpose airborne PGWs are tied with the development of all-weather "flexible" guidance systems, as well as small-sized warheads, including cluster ones, armed with self-targeting combat elements.

Radar seekers operating in the millimetre-wavelength band are seen as a very promising technology capable of providing versatile engagement of various targets in a wide range of weather conditions.

The millimetre band is selected by compromise among other guidance systems. Although millimetre-band radar radiation has lower level of propagation in adverse weather (compared to that of typical centimetre-band radars), it enjoys superior resolution. Millimetre-band sensors have worse resolution than optical ones, yet they can ensure guidance in conditions of cloudiness, fog and haze where the former are ineffective. Millimetre-band radar seekers are also more effective than IR and optical systems when operating in adverse meteorological conditions. The level of the millimetre-band radar signals passing through a foggy atmosphere (via windows of transparency) is higher by two orders than that of IR radiation, while TV systems are wholly ineffective in conditions of fog and haze and poorly effective at night.

There are other advantages of millimetre-band guidance systems. In particular, they can provide high angular resolution and acceptable noise-to-signal ratio while acquiring small-sized targets against clutter of the underlying background. Apart from that, they have smaller weight and dimensions more suited to small-calibre missiles with strict limitations of weight and dimensions, including antenna diameter.

Combat employment of internally carried missiles requires that target detection, acquisition and (aiming point) auto-tracking on the trajectory should be made independently.

Different methods of preparing combat launches of munitions with millimetre-band seekers can be applied.

Today the traditional radar-contrast guidance method is considered as the most mature technology. It ensures jamming avoidance by selecting a target with maximum reflected signal, considering also its position in a group, signal duration, spectral characteristics, and so on.

Correlation guidance method can be employed if combat conditions, seeker's capabilities and targets characteristics facilitate identification and classification of the target by its geometric and other parameters while processing the reflected signal. The method is based on a search of maximum of cross-correlation function for current and reference images of the target and terrain area about it. In this case the onboard weapons control system should be fed, prior to combat mission, with data on reconnoitered images of stationary objects converted into the target's informative signatures library.

The potential target signature data base should be formed in advance and made available for feeding into the onboard weapons control system.

It is also necessary to study feasibility of establishing data transmission channels to standoff PGWs equipped with high resolution (TV, IR imaging, millimetre-band radar) seekers, to feed them with target area images and corrected target designation data.

Nowadays, introduction of autonomous target acquisition systems employing PGWs seekers is considered most promising for searching the assigned target, which is similar to pilot's actions when he flies to a target area and detects the target visually.

The first phase of en route navigation can be flown with a strapless inertial navigation system supplemented with satellite navigation receivers and position correction system. Correction is done on exact position signals from a ground-based station that compares a real-time terrain picture received from the strapless inertial navigation system (by means of short-duration radar pulses) with the terrain map stored in its memory.

The second phase requires using the latest image processing technologies. With IR matrix-type or millimetre-band radar seekers target recognition is accomplished by matching the actual target image with the reference image stored in memory. Complex target signature patterns built on various physical fields are memorised to facilitate target selection in conditions of enemy jamming or masking.

Main trends in creation of prospective tactical PGWs are increasingly connected with the development of advanced onboard systems and new complex data processing methods based on a wide employment of artificial intelligence techniques.

Vladimir N. YARMOLYUK,
Tactical Missiles Corporation,
First deputy director general (research and development),
Candidate of Sciences (Engineering)

Valery P. KAMENEV,
Tactical Missiles Corporation,
Leading marketing specialist,
Candidate of Sciences (Engineering)

Реплика страницы http://www.ktrv.ru/press/46/484/485/


     
   
вернуться в ФОТО
   

.: MISSILES.RU / © Yevgeniy Yerokhin, 2004-2005